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Approach to ergodicity in Monte Carlo simulations
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The approach to the ergodic limit in Monte Carlo simulations is studied using both analytic and numerical
methods. With the help of a stochastic model, a metric is defined that enables the examination of a simulation
in both the ergodic and nonergodic regimes. In the nonergodic regime, the model implies how the simulation
is expected to approach ergodic behavior analytically, and the analytically inferred decay law of the metric
allows the monitoring of the onset of ergodic behavior. The metric is related to previously defined measures
developed for molecular dynamics simulations, and the metric enables the comparison of the relative efficien-
cies of different Monte Carlo schemes. Applications to Lennard-Jones 13-particle clusters are shown to match
the model for Metropolis, J-walking, and parallel tempering based approaches. The relative efficiencies of
these three Monte Carlo approaches are compared, and the decay law is shown to be useful in determining
needed high temperature parameters in parallel tempering and J-walking studies of atomic clusters.

PACS number~s!: 02.70.Lq, 05.10.Ln
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I. INTRODUCTION

A goal of Monte Carlo~MC! simulations in statistica
mechanics@1# is the calculation of ensemble mean values
thermodynamic quantities. Ensemble mean values are m
dimensional integrals over configuration space,

^U&5E dx P~x!U~x!, ~1!

whereP(x) is the probability of finding a system in the sta
defined byx, and the functional form ofP(x) depends on the
ensemble investigated. MC simulations usually genera
sampling of configuration space$xk%k51

K by the use of a sto-
chastic process with stationary probabilityP(xk). The quan-
tity U evaluated atxk is the output of the simulationU(xk)
5Uk , and its arithmetic mean valueŪ, in principle, must
approach the ensemble mean value@1#. In this paper we refer
to the set of configurations generated in a Monte Carlo sim
lation as a time sequence, and we study the behavior of t
temporal sequences$Uk% and their arithmetic mean, to un
derstand better how MC simulations approach ergodic
havior. It is important to emphasize that there are two ti
variables to consider. The time variablek labels the separat
configurations generated in a Monte Carlo walk. Variatio
of properties withk provide information about the short-tim
behavior of a MC simulation. The time variableK labels the
total length of the MC walk, and variations of compute
properties withK provide information about the convergen
of the simulation on a long time scale.

Given an infinite time, the stochastic walker in a M
simulation visits every allowed point in configuration spa
@2#. Ergodic behavior is reached when the length of the w
is sufficiently long to sample configuration space approp
ately @3#. In practice, this does not mean that the space
been densely covered but that every region with n
PRE 621063-651X/2000/62~5!/7445~17!/$15.00
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negligible probability has been reached. In such a case
can say that the simulation is effectively ergodic or that it h
reached the ergodic limit.

For a finite walk, in the event of broken ergodicity@4#,
phase space is effectively disconnected. The different disc
nected regions~called components! are separated by barrier
of zero effective probability. If a stochastic walker starts
walk in one of these regions, it may not cross the barri
within the time of the simulation. If the simulation length
increased, some barriers may become accessible for
walker and phase space is better sampled. We can conc
that a timet exists such that, for simulation lengths short
thant, the walker becomes trapped in one of the phase sp
components. For simulation lengths much larger thant,
phase space is effectively covered by the walker.

In this study we imagine a system having more than o
time scalet1!t2!•••!tL . In a Monte Carlo simulation
each scale comes from stochastic processes with diffe
correlation times@5#. A precise definition of the correlation
times for Monte Carlo processes is given in Sec. III, but
the moment we can think of these correlation times as id
tical to physical time scales of the system under study.
understand these time scales more fully, it is useful to fo
on an example. Prototypical of systems having such disp
ate time scales are atomic and molecular clusters. Typ
cluster potential surfaces have many local minima separ
by significant energy barriers@6–8#. The local minima can
be grouped into basins of similar energies, with each ba
separated from other basins again by energy barriers
short Monte Carlo times a cluster system executes small
plitude oscillations about one of its potential minima. W
can think of these vibrational time scales as the shortest t
scales that define a cluster system. As the simulation tim
extended the system eventually hops between different l
minima within the same basin. The time scale for the fi
hops between local minima can be considered the next sh
est time scale for the simulation. At still longer Monte Car
7445 ©2000 The American Physical Society
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times, the system hops between different energy basins
fining yet another time scale for the simulation. This grou
ing of time scales continues until the longest time scale fo
given system is reached. At Monte Carlo times that are lo
compared to this longest time scale, the simulation is
godic.

Consider a system with several time scales as mentio
above. If the length of the simulation is smaller than t
smallest correlation time, the walker may become trappe
an effectively disconnected region and the sampling of ph
space is incomplete. By increasing the time, the memory
the initial condition in the sampling decreases as the wa
crosses to other previously unreachable regions. These o
lations and hoppings can be modeled by a superpositio
stochastic processes with different correlation times. Th
processes with nonzero correlation times are known ascol-
ored noiseprocesses~as opposed to zero correlation tim
white noiseprocesses! @5#. From the study of the autocorre
lation functions of a stochastic model defined using th
colored noise processes, we can verify that, at a fixed
lengthK, there exist two different groups of processes; tho
that contribute to the autocorrelation function with terms t
decay like 1/k ~called diffusive processes!, and those that
contribute to the autocorrelation function with terms that d
cay more slowly than 1/k ~called nondiffusiveprocesses!.
When the time of the simulation is increased, some non
fusive processes at shorter run lengths start to contribut
the autocorrelation function like diffusive processes. Af
the walk length reaches the largest correlation timetL , all
processes contribute to the autocorrelation function w
terms that decay like 1/k. At this point, the simulation is a
the diffusive regime and effective ergodicity has be
reached. A principal goal of this work is to investigate t
way in which the MC output$Uk% reaches the diffusive limit
~i.e., the ergodic limit! by studying the properties of autoco
relation functions under changes of scale in time,K→bK
with b.1. By time scaling it is possible to infer the deca
law of the nondiffusive contributions with respect to the to
simulation timeK. The functional dependence of the nond
fusive contributions on the parameterb that is used to scale
K is determined empirically. We have found the decay l
so determined to be a particularly valuable method of c
cluding when a simulation can be considered ergodic. Un
previous studies@3,9–11# that have investigated only the be
havior of certain autocorrelation functions in the ergodic
gime, by focusing on the approach to ergodic behavior
have a more careful monitor of the onset of ergodicity. On
the nondiffusive contributions have decayed to a point wh
they are too small to be distinguished from zero to within
fluctuations of the calculation, we can say that the ergo
limit has been reached.

The autocorrelation functions we use to measure the
proach to the ergodic limit are based on one of the probe
ergodicity developed by Thirumalai and co-workers@3,9–
11#, and is often called theenergy metric. The energy metric
has been proposed as an alternative to other technique@3#
~like the study of the Lyapunov exponents@12#! for the study
of ergodic properties in molecular dynamics simulatio
The metric has been used to study the relative efficienc
MC simulation methods as well@13#. The MC metric as used
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in the current work can easily be extended from the energ
other scalar observables of the system.

We present two key issues in this paper. First, from
knowledge of the decay law of the nondiffusive contrib
tions to the MC metric, we infer how long a simulation mu
be to be considered effectively ergodic. Second, once
ergodic limit is reached, we can compare the results fr
different numerical algorithms to measure relative efficie
cies. Because the outcomes of MC simulations are noisy
have found it useful to separate diffusive and nondiffus
terms in the MC metric with a Fourier analysis so that w
can neglect the high frequency components of the noise. T
technique has given reproducible results.

To test the match between the stochastic model and ac
Monte Carlo simulations, we examine the approach to
godic behavior in simulations of Lennard-Jones clusters.
cently@14,15# we have studied the thermodynamic propert
of Lennard-Jones clusters as a function of temperature u
both J-walking@16# and parallel tempering methods@17–19#.
Both simulation techniques require an initial high tempe
ture that must be ergodic when Metropolis Monte Ca
methods@20# are used. If the Metropolis method does n
give ergodic results at the initial high temperature, syste
atic errors propagate to the lower temperatures in J-walk
and parallel tempering simulations, and the results can
flawed or meaningless. In most Monte Carlo simulations
clusters at finite temperatures@21,22#, the clusters are define
by enclosing the atoms within a constraining potential ab
the center of mass of the system. The constraining poten
is necessary because clusters at finite temperatures ha
nite vapor pressures, and the association of any one a
with the cluster can be ill defined. From experien
@14,15,23# we have found that if the radius of the constrai
ing potential and the initial high temperature are not bo
carefully chosen, it can be difficult to attain ergodicity wi
Metropolis methods. A key concern then is the choice
constraining radius and the choice of initial temperature.
verify the stochastic model by investigating Monte Ca
simulation results as a function of the temperature and
size of the constraining potential.

The contents of the remainder of this paper are as follo
In Sec. II we motivate the studies that follow by examinin
numerally the behavior of a set of Monte Carlo simulatio
of a 13-particle Lennard-Jones cluster. This cluster system
used to illustrate the results throughout this paper. In Sec
we introduce the stochastic model based on a continu
time sequence. In Sec. IV we extend the model to disc
time sequences characteristic of actual Monte Carlo sim
tions. In Sec. V we test the discrete stochastic model w
applications to Lennard-Jones clusters and in Sec. VI
summarize our conclusions. Many of the key derivatio
needed for the developments are found in two Appendix

II. AN EXAMPLE CALCULATION

Before discussing the major developments of this work
is useful to understand the nature of the problem we
attempting to solve by examining some numerical results
a prototypical system. We take the 13-particle Lennard-Jo
cluster defined by the potential function
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V~x!54«(
i 52

N

(
j 51

i 21 F S s

r i j
D 12

2S s

r i j
D 6G1(

i 51

N

VC~xW i ,Rc!,

~2!

where« and s are the standard Lennard-Jones energy
length parameters,N is the number of particles in the cluste
~13 in the present case!, r i j is the distance between particle
i and j,

r i j 5uxW i2xW j u, ~3!

andVC is the constraining potential discussed in Sec. I,

VC~xW i ,Rc!5H 0, uxW i2XW cu,Rc

`, Rc,uxW i2XW cu,
~4!

whereXW c is the coordinate of the center of mass of the cl
ter andRc is the radius of the constraining sphere. The 1
particle Lennard-Jones cluster has a complex potential
face with many minima separated by significant ene
barriers@6–8#, and ergodicity problems associated with t
simulation of properties of this system are well known@16#.
We now consider a Metropolis MC simulation of the avera
potential energy of the system in the canonical ensembl
temperaturekBT/«50.393 (kB is the Boltzmann constant!.
This average potential energyV̄k is defined by

V̄k5
1

k (
k851

k

Vk8 ~5!

and is displayed in the upper panel of Fig. 1 as a function
the walk lengthk for 20 independent simulations each in
tialized from a random configuration. Over the maximu
time scaleK of the walks, it is apparent that the potenti
energy averaged over each independent walk has not
verged to the same result. Such unreproducible behavio
symptomatic of a simulation not yet at the ergodic limit.

At the ergodic limit ~i.e., for maximum walk lengthK
greater than that included in Fig. 1! the averages displayed i
the upper panel of Fig. 1 must approach the same value
each walker. Using related ideas developed elsewh
@3,9,10#, the extent to which the walks approach the sa
limit can be measured in terms of a metricdk defined by

dk5
2

M ~M21! (
i 52

M

(
j 51

i 21

@V̄k
( i )2V̄k

( j )#2. ~6!

In Eq. ~6! M represents the number of independent wal
andV̄k

( i ) is the average potential energy computed in walki at
MC time k. The metric measures the energy fluctuations
the walk as a function of the walk length. For an ergod
simulation, the metric must decay to zero. For the 20 sim
lations of the 13-particle Lennard-Jones cluster, the metri
a function ofk is plotted in the lower panel of Fig. 1. Rathe
than asymptotically approaching zero, over the short len
of the walk displayed here,dk has decayed to a constant, a
as discussed later in this paper, over the time scale of
simulation,dk can be qualitatively represented by the fun
tion
d
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dk5
AK

k
1BK , ~7!

whereAK andBK are coefficients that are dependent on t
total walk lengthK. As K is increased to a time where th
walk is ergodic,BK must decay to zero. Major goals of th
work are to understand howBK decays and to use the deca
law discovered to determine the onset of ergodic behav
Our approach is to introduce first a continuous stocha
model of a simulation followed by a discrete model mo
clearly linked to actual MC studies.

III. STOCHASTIC MODEL

We have discussed in the Introduction how the output
MC simulations can be considered to be a combination
stochastic processes with different time scales, and how
contributions to autocorrelation function from these pr
cesses can vary when the length of the simulation is
larged. Here we present a continuous time model for
stochastic processes that occur in a simulation. Even tho
a MC simulation occurs in a discrete time~each MC point
represents a time unit!, we find that the continuous mode

FIG. 1. The upper panel shows the ‘‘time evolution’’ ofV̄k ~in
units of «) for M520 independent experiments. The lower pan
showsdk ~in units of «2) vs k for the experiments of the uppe
panel.Rc has been set to 4s andkBT/«50.393. At least two basins
with different energies are present. Clearly,dk goes to a constan
whenk is increased within the total time scale of the simulation
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helps to understand better the ideas used in the modelin
the MC output.

In this section the ensemble mean value is used to find
expression for the autocorrelation functions of the mod
Although in actual numerical calculations the ensem
mean is replaced by a mean over a finite number of indep
dent experiments, the results obtained here give informa
about the limit of an infinite sample.

The stationary process used to sample space is a sto
tic process. We assume the output of the MC simulation
be modeled by a linear superposition of stochastic proce
with different correlation timest l >0,

U~ t !5Uc1AG0j~ t !1 (
l 51

L

AG l gl ~ t/t l !, ~8!

whereUc is a constant, the random variablej(t) represents
white noise processes with zero correlation time (t050),
and the$gl (t/t l )% are stochastic processes with correlati
timest l .0. j(t) andgl (t/t l ) have units of the square roo
of time, andG0 andG l are constants with units ofU2/t. If U
is chosen to be the thex coordinate of a particle,G0 andG l

have units of a diffusion constant. Consequently we refe
these constants as generalized diffusion coefficients.
white noise process has the following properties@5#:

^j~ t !&50, ~9!

^j~ t !j~ t8!&5d~ t2t8!, ~10!

and the remaining colored noise processes are assum
satisfy

^gl ~ t/t l !&50, ~11!

^gl ~ t/t l !gl ~ t8/t l !&5
1

t l

f l S ut2t8u
t l

D , ~12!

so that they represent processes with a memoryf l . Even
though correlations between processes with different co
lation times may be nonzero, we assume the processes
independent, i.e.,

^gl ~ t/t l !gl 8~ t8/t l 8!&5^gl ~ t/t l !&^gl 8~ t8/t l 8!&

50 ;l Þl 8, ~13!

^j~ t !gl ~ t8/t l !&5^j~ t !&^gl ~ t8/t l !&50 ;t and t8.
~14!

The memory function is assumed to be a continuous func
that depends only on the distance betweent and t8, disre-
garding the time origin~stationary condition!. The memory
function represents the correlation between two times of
processgl . In our model we impose the condition

t

t l

f l S t

t l
D,E

0

t

dt8
1

t l

f l S t8

t l
D,`. ~15!

The scope and implications of the leftmost inequality a
explored in Appendix A. In Appendix A we also examine th
conditionsf l must satisfy in order to yield contributions t
the autocorrelation function that decay more weakly thant.
of
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We now assume that this inequality can be taken as a bo
to possible maxima off l appearing att.0. The rightmost
inequality enables us to assumef l is normalized,

E
2`

`

dt
1

t l

f l S utu
t l

D51. ~16!

We have identified here the time scalet l with the correla-
tion time of the stochastic processgl . This identification is
valid if

E
2`

`

dt
utu
t l

f l S utu
t l

D5t l , ~17!

which implies that the behavior off l at large t must be
O(t2(21e)), or smaller.

In addition, by the properties of the ensemble mean va
we have that for all reall

0<^@gl ~ t/t l !1lgl ~ t8/t l !#2&

<^gl ~ t/t l !2&12l^gl ~ t/t l !gl ~ t8/t l !&1l2^gl ~ t8/t l !2&

<
1

t l
H f l ~0!12l f l S ut2t8u

t l
D1l2f l ~0!J . ~18!

Equation~18! must be true for alll. Therefore, the discrimi-
nant of the polynomial inl must be nonpositive,

4F f l S ut2t8u
t l

D2 f l ~0!GF f l S ut2t8u
t l

D1 f l ~0!G<0. ~19!

Consequently,f l (0)5max$f l (x);x>0%. Other properties
of f l are studied in Appendix A.

The ensemble mean value^U& is time independent. The
ensemble mean value of the noise processes is zero. Th
fore, Uc must be equal tôU&. Processes defined by Eq.~8!
have two different components, uncorrelated white noise
correlated processes with correlation timet l . Because the
goal of the simulation is the calculation of the ensem
mean^U& by the analysis of the time series, we study t
behavior of the temporal meanŪ(t),

Ū~ t !5
1

t E0

t

dt8U~ t8!

5^U&1
1

t
AG0W~ t !1

1

t (
l 51

L

AG l Gl ~ t/t l !, ~20!

whereW(t) is a Wiener process@5#,

W~ t !5E
0

t

dt8j~ t8!, ~21!

^W~ t !&50, ~22!

^W~ t !W~ t8!&5t, , ~23!

with t,5min(t,t8) andGl (t/t l )5*0
t dt8gl (t8/t l ).

Equation~20! implies that the evolution of the tempora
mean Ū(t) has the same structure as that ofU, with an
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uncorrelated term and terms with tailed correlation functio
The autocorrelation function of the processŪ at timest and
t8 is defined by

k~ t,t8!5^~Ū~ t !2^U&!~Ū~ t8!2^U&!&

5
G0

tt8
^W~ t !W~ t8!&

1
1

tt8
(

l 51

L

G l ^Gl ~ t/t l !Gl ~ t8/t l !&, ~24!

where we have used Eqs.~13! and ~14! to neglect terms
involving processes with different correlation times.

Because we have assumed thatf l is a continuous func-
tion, f l reaches its maximum and minimum values with
any closed interval considered. Thel th nondiffusive contri-
bution tok(t,t8),

1

tt8
^Gl ~ t/t l !Gl ~ t8/t l !&

5
1

tt8
E

0

t

dt1E
0

t8
dt2

1

t l

f l S ut12t2u
t l

D , ~25!

is bounded

1

t,t.
E

0

t,

dt1E
0

t.

dt2
1

t l

f l S tmin

t l
D

<
1

tt8
^Gl ~ t/t l !Gl ~ t8/t l !&

<
1

t,t.
E

0

t,

dt1E
0

t.

dt2
1

t l

f l ~0!,

1

t l

f l S tmin

t l
D<

1

tt8
^Gl ~ t/t l !Gl ~ t8/t l !&

<
1

t l

f l ~0!, ~26!

wheret.5max(t,t8), andtmin is the time at whichf l reaches
its minimum value in the closed interval@0,t.#. There exists
a t l* (t.)P@0,tmin# @24# such that

1

tt8
^Gl ~ t/t l !Gl ~ t8/t l !&5

1

t l

f l S t l* ~ t.!

t l
D . ~27!

Using Eqs.~23! and ~27! in Eq. ~24!, we find that

k~ t,t8!5
G0

t.
1 (

l 51

L
G l

t l

f l S t l* ~ t.!

t l
D . ~28!

For all times shorter thant1 the autocorrelation function is
the sum ofdiffusive contributions~proportional to 1/t) plus
nondiffusive contributions. These contributions implicitly de
pend ont. throught l* (t.). We assume thatf l satisfies the
.conditions stated in Appendix A, so that the dependence
f l on t is weaker than1/t ~for total time scales shorter tha
t l ; see Appendix A!.

We next consider the behavior of Eq.~28! for time scales
greater thant1. Under the scale changet→bt such thatt1
!bt.!t2, the contributions to the correlation function from
the process with correlation timet1 can be considered diffu
sive @in other words, by virtue of Eqs.~10! and ~12!, f 1 /t1
has become ad function#. With bt.!t2, the other processe
preserve their old properties. Then the autocorrelation fu
tion can be expressed

k~bt,bt8!5
G01G1

bt.
1 (

l 52

L
G l

t l

f l S tbl* ~ t.!

tbl
D . ~29!

The complete derivation of Eq.~29! can be found in Appen-
dix B. For times larger than the correlation timetL , all
contributions to the autocorrelation function are diffusiv
the simulation can be considered ergodic, the sampling c
plete, and the temporal mean is equal to the ensemble m
within O(1/t) mean square fluctuations.

IV. DISCRETE TIME SEQUENCES AND
THE MC METRIC

Monte Carlo simulations generate discrete sequencesUk
of values of the quantity under study. Additionally, in actu
calculations the ensemble of sequences is represented
finite rather than an infinite set. In this section, the mo
developed in the previous section is extended to finite set
discrete sequences. We express theM sequences$Uk

(m)%k51
K ,

where the label~m! ranges from 1 toM. The exact ensemble
mean valuê U& can be obtained in the limit thatM becomes
infinite. In analogy with the model developed in Sec. I
each output is assumed to have the form

Uk
(m)5^U&1AG0jk

(m)1 (
l 51

L

AG l gl ;k/t l

(m) , ~30!

where

^jk
(m)&50, ~31!

^jk
(m)jk8

(n)&5dm,ndk,k8 , ~32!

^gl ;k/t l

(m) &50, ~33!

^gl ;k/t l

(m) gl 8;k8/t l 8

(n) &5dm,nd l ,l 8 f l S uk2k8u
t l

D . ~34!

The true ensemble average^U& does not depend on the inde
m.

In the discrete case we define a metric

dk5
2

M ~M21! (
i 52

M

(
j 51

i 21

@Ūk
( i )2Ūk

( j )#2, ~35!

where the bars represent the temporal mean value
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Ūk
(m)5

1

k (
k851

k

Uk8
(m)

5^U&1
AG0

k
Wk

(m)1 (
l 51

L AG l

k
Gl ;k/t l

(m) , ~36!

with

Wk
(m)5 (

k851

k

jk8
(m) , ~37!

Gl ;k/t l

(m) 5 (
k851

k

gl ;k8/t l

(m) . ~38!

Observe that in the present case our finite sample of
io
e

e

infinite ensemble is the set of outcomes fromM independent
numerical experiments. The metric we have defined in
~35! can be contrasted with alternative metrics@3,9,10# pre-
viously defined for molecular dynamics simulations. The
alternative metrics examine the fluctuations of two simu
tions initialized from different components of configuratio
space averaged with respect to all the particles in the sys
The metric we use in this work is determined using an av
age with respect toM independent simulations that represe
a subset of the full ensemble.

Using the model presented in Eq.~30!, we now develop a
way to predict the behavior of the MC simulation in th
nonergodic and ergodic regimes. We first consider the c
that the total simulation timeK is larger than the first corre
lation time t1 but shorter thant2, i.e., t1!K!t2. The ex-
pression fordk is given by
dk5
2

M ~M21! (
i 52

M

(
j 51

i 21

@~Ūk
( i )2^U&!2~Ūk

( j )2^U&!#2

5
2

M (
i 51

M

~Ūk
( i )2^U&!22

4

M ~M21! (
i 52

M

(
j 51

i 21

~Ūk
( i )2^U&!~Ūk

( j )2^U&!

52 G0

1

M (
i 51

M S Wk
( i )

k D 2

12 G1

1

M (
i 51

M S G1;k/t1

( i )

k
D 2

12 (
l 52

L

G l

1

M (
i 51

M S Gl ;k/t l

( i )

k
D 2

14 (
l 51

L

AG0G l

1

M (
i 51

M Wk
( i )Gl ;k/t l

( i )

k2

14 (
l 52

L

(
l 851

l 21

AG l G l 8

1

M (
i 51

M Gl ;k/t l

( i ) Gl 8;k/t l 8

( i )

k2
2

4

M ~M21! (
i 52

M

(
j 51

i 21

~Ūk
( i )2^U&!~Ūk

( j )2^U&!. ~39!
ve
. If

l-
nc-

e

r a
If the number of experimentsM is sufficiently large, we can
neglect terms involving processes with different correlat
times, and products of sequences belonging to different
periments. Under these assumptions we obtain

dk52
G0

k

1

M (
i 51

M Wk
( i )2

k
12

G1

k

1

M (
i 51

M G1;k/t1

( i ) 2

k

12 (
l 52

L

G l

1

M (
i 51

M S Gl ; k/t l

( i )

k
D 2

. ~40!

Equation~40! preserves the form of Eq.~28!. To make this
statement explicit, let us rewrite Eq.~40! as

dk52
Gk

k
12Yk , ~41!

where

Gk5G0

1

M (
i 51

M Wk
( i )2

k
1G1

1

M (
i 51

M G1;k/t1

( i )2

k
, ~42!

Yk5 (
l 52

L

G l

1

M (
i 51

M S Gl ;k/t l

( i )

k
D 2

. ~43!
n
x-

In Appendix B we present a study of the way nondiffusi
contributions become diffusive under time scale changes
M is sufficiently large andt1!K!t2, by virtue of Appendix
B, Gk must be roughly a constant. Byroughly a constantwe
mean a constantC plus some rapidly fluctuating functionzk ,
with the following properties:~a! ^zk&50 and ~b! uCu
@maxk51,2, . . . ,K(uzku). Then

Gk.GK1zk . ~44!

If K is enlarged, we expect to have a larger value ofGK . Yk
is a quantity related to the memory functionsf l with corre-
lation timest l @K. In the continuous time model, the co
ored noise processes contribute to the autocorrelation fu
tion with terms proportional tof l „t l* (t.)/t l …, which are
weakly dependent ont ~see Appendix A!. We can expectYk
to be weakly dependent onk, and for sequences of lengthK
and for M sufficiently large we consider this quantity to b
roughly a constant,

Yk.YK1bk , ~45!

where bk represents additional random noise. Then, fo
given lengthk<K, the MC metricdk can be approximated
by
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dk52
GK

k
12 YK1gk , ~46!

where gk52(zk /k1bk) represents remaining stochas
noise from both contributions. In this approximation,GK and
YK are the quantities that carry the long-time dependen
Short-time features appear in the 1/k dependence and in th
remaining noisegk . If the sequences considered are
creased in size by a factor ofb, such thattl21!K!tl

!bK for a given 1<l<L, GK (YK) is increased~de-
creased! ~see Appendix B!. Then

dbk52
GbK

bk
12 YbK1gbk , ~47!

whereYbK must go to zero andGbK must approach a con
stant whenb is increased. By virtue of the expected behav
of the nondiffusive contributions~see Appendix A!, we pro-
pose the following expression forYbK :

YbK5YKf~b!, ~48!

wheref(b) is a decreasing function ofb. Moreover,YbK is
a sum of nondiffusive contributions. As presented in Appe
dix A, each nondiffusive contribution to the autocorrelati
function has a relative variation smaller than the relat
variation of the diffusive contribution, namely, 121/b. If
this inequality is applicable to the sum of nondiffusive co
tributions, we have that

12
1

b
.12

YbK

YK
, ~49!
s.
th
e.

-

r

-

e

-

12
1

b
.12f~b!, ~50!

1,bf~b!, ~51!

for all b.1. Then,f must be either

f~b!5b2y ~52!

or

f~b!5
1

h ln~b!11
, ~53!

with 0,y,1 and 0,h<1. Equation~53! can be thought of
as the limit of Eq.~52! when the exponent goes to zero. W
know of noa priori argument to justify Eq.~48!. However,
as is discussed in Sec. V, our numerical experience
shown Eq.~48! to be obeyed in all cases we have examin

Our goal is to develop a criterion to decide when t
simulation can be considered ergodic. From the previ
considerations it is clear that the ergodic limit is reach
whenYK is indistinguishable from zero. The output from
MC simulation is usually noisy. Therefore,gk cannot be ne-
glected. A useful way to separate diffusive and nondiffus
contributions and to eliminate the stochastic noise from
~46! is to perform a Fourier analysis of the functionkdk . Let
us define the frequenciesvn5(2p/K)n, with n
50,1, . . . ,K21. The discrete Fourier transform of the fun
tion kdk is the signalCK(vn),
CK~vn!5kd̂k~vn!5
1

K (
k51

K

exp~2 ivnk!kdk ~54!

5
2

K (
k51

K

exp~2 ivnk!GK1
2

K (
k51

K

k exp~2 ivnk!YK1kĝk~vn!

52 dn,0GK1$dn,0~K11!1~12dn,0!~11 i cot@vn/2# !%YK1kĝk~vn!

52 dn,0GK1~Kdn,011!YK1 i ~12dn,0!cot~vn/2!YK1kĝk~vn!. ~55!
.

e
the

h
e

olv-
In general,kĝk(vn) is negligible except at high frequencie
For small positive values of the frequency we can make
approximation cot(vn/2).2/vn . From this approximation
we have

Im@CK~vn!#.
2

vn
YK . ~56!

The real part of Eq.~55! for positive frequencies is

Re@CK~vn!#5YK . ~57!
e
Even though simpler than Eq.~56!, we have found that Eq
~57! is more sensitive to the deviations ofdk from the ap-
proximation Eq.~46!. Therefore, the data obtained from th
real part are of poorer quality than the data obtained from
imaginary part.

Equation~56! implies that, for a given simulation lengt
K, the contributions to the MC metric from the nondiffusiv
process can be determined from a simple relationship inv
ing the Fourier transform of the functionkdk at low frequen-
cies. By increasing the length of the runK by a factor ofb, it
is possible to observe the dependence ofYbK on bK.
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V. APPLICATIONS

The concepts developed in the previous sections are
ficiently general to be applied to any kind of MC simulatio
We devote the present section to the application of the
velopments of this paper to the study of the Lennard-Jo
13-particle cluster (LJ13) in the canonical ensemble. Th
system has been introduced previously in Sec. II.

Some thermodynamic properties of clusters as a func
of temperature exhibit rapid changes that are reminiscen
similar changes that occur for the same properties in b
systems at phase transitions. In a bulk system a phase
sition occurs at a single temperature. For clusters the ra
changes in thermodynamic properties occur over a fi
temperature interval. To distinguish the temperature ra
where thermodynamic properties change rapidly in clus
from a true phase transition, we follow Berryet al. @25# and
refer to such changes in physical properties as assoc
with a phase change. A common property that has b
found to be useful in monitoring these phase change inter
of temperature is the heat capacity at constant volume@26#,

CV~T!5
1

kBT2
^~V2^V&T!2&T1

3

2
NkB , ~58!

where^•&T represents the classical canonical mean value
In this work we consider the bare Metropolis~Met! @20#,

J-walking ~Jw! @16#, and parallel tempering~PT! @17–19#
approaches to Monte Carlo simulations. The free variable
all these methods is the reduced temperaturekBT/«. In PT
and Jw simulations, the highest temperature used (Th) must
be sufficiently large to ensure that Met is ergodic@16#. From
experience simulating a variety of systems, we have fo
that Th must also be lower than a temperatureTb where
cluster evaporation events become frequent. It is usefu
think of Tb as the cluster analog of a boiling temperature. W
have found that Met is unable to sample the boiling ph
change region for clusters ergodically, using total time sca
accessible to current simulations.

For the results that follow,Uk
(m) is chosen to be repre

sented by the potential energy of the system. In generalUk
(m)

can be any scalar property of the system. We define a pa
represent a set of single particle MC moves taken sequ
tially over the 13 particles in the cluster. We takeUk

(m) to be
the potential energy at thekth pass, in themth experiment.
Using Eq.~55! we can write

CK~0!52GK1~K11!YK . ~59!

In the nonergodic regime,CK(0) grows withK, while in the
ergodic regime, the signalCK(0) approaches a constant.

We begin by displaying results obtained for a calculat
that has not attained ergodicity over the time scale of
simulation. We examine the 13-particle Lennard-Jones c
ter with the Met algorithm settingRc54s at a temperature
of kBTh /«50.393. The temperature is chosen to be that ty
cally used as the initial high temperature in Jw and PT st
ies of LJ13. By choosing a large constraining radius, t
evaporation events are so frequent at the chosen temper
that attaining ergodicity proves to be quite difficult. We de
onstrate the effect of reducing the constraining rad
f-
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shortly. The number of replicas used in the calculation
M540, andK5104. The upper panel of Fig. 2 shows th
signalCK(0) @evaluated using Eq.~54!#, which grows along
the entire simulation. This is the behavior expected in
nonergodic regime. In the lower panel we can see the ‘‘ti
evolution’’ of the temporal mean values of 15 experimen
There are three sets of curves, each of which is indicative
sampling of at least three different energy basins. At l
values ofK the curves in the lower panel differ significantly
At K.4000 the high energy basin curves begin to decre
in energy. For a value ofK larger than the data displayed i
Fig. 2, the curves can be expected to coalesce with the
energy basin curves. It is clear that forK<10 000 the simu-
lation is not ergodic.

In PT and Jw studies it is essential that the initial hi
temperature walk be ergodic. Ergodicity can be attained
LJ13 by reducing the radius of the constraining potential
that evaporation events are rare. We now present a stud
YK as a function ofK for several values ofRc . To determine
YK , we have calculated the Fourier transform functi
CK(vn) using Eq. ~54! at a series of frequenciesvn
52pn/K where n has ranged from 1 to
min(A12bK/20p,100). This range of frequencies ensur
that the linear approximation used in Eq.~55! is valid while

FIG. 2. The upper panel is the signalCK(0) ~in units of«2) vs
K for Rc54s at kBTh /«50.393 fromM540 independent experi
ments on LJ13. The length of the simulation is 104 MC passes. The

lower panel shows the ‘‘time evolution’’ ofŪK ~in units of «) for
15 independent experiments. At least three basins with diffe
energies are present. Clearly, the simulation at this scale of tim
not ergodic.
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PRE 62 7453APPROACH TO ERGODICITY IN MONTE CARLO SIMULATIONS
including sufficient numbers of points for accuracy@27#. Us-
ing Eq. ~56!, we have calculated the slope of the imagina
part of 1/CK(vn) as a function ofvn for these frequencies
The data points appearing in Fig. 3 are the mean values
20 independent calculations of the slope of 1/CK(vn).

Starting from random configurations, we have perform
53104 Met passes atkBTh /«50.393. After this warm-up
process, we have created sequences of sizesbK5104, 2
3104, 43104, . . . ,643104. The results are presented
Fig. 3 for Rc54s, 3s, 2.5s, and 2s. The upper pane
showsYbK as a function of log2(b), for fixed K5104. We
have chosen to present the data using base 2 logarithm
clarity @each increase by 1 unit of log2(b) represents a facto
of 2 scale increase#. All the data decrease with increasingb,
but only Rc52s and Rc52.5s appear to vanish to within
the error bars over the time scale of the current simulation
the lower panel we presentYK /YbK as a function of log2(b)
for Rc54 and 3s. The decay law suggested in Eq.~48! with
f given by Eq.~53! is satisfied for both radii.

We have stated that the simulation can be considered
fectively ergodic whenYK is indistinguishable from zero. In
Fig. 4 we have plottedYbK and its statistical error as a func
tion of log2(b) for Rc52.5 and 2s. For Rc52s the crossing
point of YbK and its error is atbK.163104. For Rc

FIG. 3. Upper panel:YbK ~in units of «2) as a function of
log2(b) for Rc54s, 3s, 2.5s, and 2s. For the two larger radii the
full line is the best fit to the data points, according to Eq.~48! with
f defined in Eq.~53!. The lower panel shows the linear behavior
YK /YbK vs log2(b), for Rc54s and 3s. K has been set to 104.
er

d

for

In

f-

52.5s the crossing point is atbK.643104. We can con-
clude that forkBTh /«50.393 andRc52s the simulation
can be considered effectively ergodic after 163104 Met
passes.

Once a constraining radius is chosen, PT and Jw sim
tions require that the highest temperatureTh be chosen so
that Met is ergodic. For a givenRc , the extent of ergodicity
can be tested using the same metric that has been use
determining the optimum value ofRc , but by varying the
temperature. For the parameterskBTh /«50.393 and Rc
52s the simulation is ergodic even at very short seque
lengths. We have found that forkBTh /«,0.393 the simula-
tions are not ergodic. To be sure that the parameters
appropriate, we have performed a short PT simulation (4

passes; ten PT passes consist of nine Met passes plu
exchange attempt! with 40 equally spaced temperatures
the rangekBT/«P@0.028,0.393# in order to obtain a first
estimate of the position of the melting and boiling tempe
ture regions. The boiling peak in the specific heat appear
be located at a higher temperature thankBT/«50.393. More-
over, the value ofCV at kBT/«50.393 is about one-half the
value ofCV at the temperature of the melting peakkBTm /«
50.282. From these results we feel it is safe to chooseRc
52s andkBTh /«50.393 for the calculations that follow.

We now illustrate the convergence characteristics ofYK
when we increase the total time scale of the calculation b
factorb. We illustrate this behavior using a PT simulation
LJ13, and we focus on results at the temperature of the m
ing peak in the heat capacity (kBTm /«50.282). We choose

FIG. 4. YbK ~in units of «2) and its error vs log2(b) for Rc

52.5s and 2s, with K5104. WhenYbK is on the order of its own
error, the simulation can be considered ergodic. ForRc52s the
simulation becomes ergodic at log2(b).4 (bK.163104). For Rc

52.5s a longer simulation is needed to reach ergodicity.
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7454 PRE 62J. P. NEIROTTI, DAVID L. FREEMAN, AND J. D. DOLL
this temperature, because from experience@14,15,23# we
know the statistical fluctuations are large at the melting h
capacity maximum. The large statistical fluctuations mak
possible to emphasize the behavior ofYK . We have run the
PT simulation at 40 equally spaced temperatures in the ra
kBT/«P@0.028,0.393#. The initial warm-up time has bee
set to 104 Met passes, followed by 23104 PT passes. Fol-
lowing the warm-up period, we perform simulations of 105,
23105, 43105, 83105, 163105, and 323105 PT passes.
In each case the initial configuration has been taken to be
last configuration of the previous run. The output of t
simulation are sequences of the potential energy.YK has
been determined in the same way as in the calculation of
high temperature parameters~presented in Fig. 3 and Fig. 4!.
The data points appearing in the upper panel of Fig. 5 are
mean value over 20 independent calculations of the slop
1/CK(vn). In the lower panel of Fig. 5 we have plotte
log2(YK /YbK) as a function of log2(b), whereK5104 andb
51,2,4, . . . ,32. The slope of the linear fit is the exponenty,
according to Eq.~52!. At the temperature of the meltin
peak,y50.9360.03.

FIG. 5. The upper panel shows the decay behavior ofYbK ~in
units of «2) as a function of log2(b) for PT and Met, at the tem-
perature of the melting peak of the heat capacity,kBTm /«50.282.
From Eq.~52!, we plot log2(YK /YbK) vs log2(b), to extract the value
of the exponenty ~the slope of the linear fit!. We have foundy
50.9360.03 for PT, andy50.9460.02 for Met. The straight lines
are the best linear fits of the data points.
at
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he

e
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It is of interest to perform a similar study of the behavi
of YK as a function of the time scaling for a Met calculatio
We have taken the final configuration of the PT simulation
kBTm /«50.282 as an initial configuration, and we have p
formed a simple Met simulation at that melting temperatu
A graph of YbK and log2(YK /YbK) as a function of log2(b)
for Met is also presented in Fig. 5. From the upper pane
Fig. 5, it is evident that Met results are not ergodic within t
same scaled time as the PT results. It is also evident tha
power law exponents for Met and PT are not distinguishab
Similar studies of the power law using the Jw method a
give the same exponent. Neither an increase in the numb
temperatures nor changing the distribution of temperature
either Jw or PT simulations has any effect on the calcula
exponent.

By using the results to compare the relative efficiencies
Met, Jw, and PT simulations for the LJ13 system, we have
found that PT and Jw simulations can be considered erg
if the run length is on the order of 23105 passes, while Met
simulations that are initialized from configurations genera
from an ergodic PT study are ergodic when the total r
length consists of 23106 passes or more.

In order to compare approaches, we have calculatedG as
a function of the reduced temperature, for the three meth
The comparison of diffusion coefficients from different alg
rithms has also been used by Andricioaei and Straub@13#.
The comparison of Jw and Met with PT is presented in F
6. The Jw and PT simulations are found to have compara
efficiencies usingG as a measure for all calculated tempe
tures. At intermediate temperatures, Met is significantly l

FIG. 6. Comparison of the Met and Jw diffusion coefficien
with the PT diffusion coefficient as a function of the reduced te
perature. The dashed line represents equivalence between me
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PRE 62 7455APPROACH TO ERGODICITY IN MONTE CARLO SIMULATIONS
efficient. We have chosen to truncate the Jw study
kBT/«50.12. For temperatures belowkBT/«50.12, Jw
simulations require significant effort, because a large se
external distributions must be generated. Because at
peratures belowkBT/«50.12 LJ13 is dominated by structure
close to the lowest energy icosahedral isomer, we expec
Jw and PT methods to have similar efficiencies~as measured
by G) for all temperatures.

VI. CONCLUSIONS

In this paper we have presented a study of the approac
the ergodic limit in MC simulations. In all the cases exa
ined, the behavior of the MC metricdk can be approximated
by Eq. ~46!, and the behavior ofYbK satisfies Eq.~48!. Be-
cause the exponenty is smaller than 1 for all the cases stu
ied, the dependence of the nondiffusive contributions ondk
is weaker~in the sense of Appendix A! than for the diffusive
contributions. The assumptions on which we have built
stochastic model have been verified numerically for a sys
having a sufficiently complex potential surface to be view
as prototypical of a large set of many-particle systems.

The MC metric used in this work appears to be a valua
tool to study the ergodicity properties of MC simulation
The nonergodic components of the MC metric enable
prediction of the minimum length a MC simulation mu
have in order to be considered ergodic. Comparison oG
from different algorithms gives a reasonable estimate of th
relative efficiencies.

From the study of the melting region of 13-particle clu
ters, we have found that the exponenty depends on both the
method used and the nature of the potential energy funct
We have performed calculations, not discussed in this w
where the functional form of the potential energy is mo
fied. These studies have showny to be dependent on th
details of the potential. We have not found the exponenty to
be a strong function of method. Although PT and Met ha
significantly different efficiencies as measured by their re
tive diffusion coefficients,y is nearly the same in the tw
methods. The difference in the decay ofYK appears to be
dominated by the coefficient in Eqs.~48! and~52! rather than
the exponent.

As discussed in the text, parallel tempering and J-walk
studies of many-particle systems must have an initial h
temperature component that is chosen so that a Met sim
tion is known to be ergodic. For cluster simulations that
quire an external constraining potential to define the clus
the radius of the constraining potential must be carefu
chosen in order to achieve ergodic results. We have fo
the metric and associated decay laws developed in this w
to be a particularly valuable method of choosing these ini
parameters in both parallel tempering and J-walking simu
tions.

We also remark that the metric introduced here may b
more sensitive probe of ergodicity than might be required
some applications. For example, in previous J-walking st
ies @26# of the 13-particle Lennard-Jones cluster, the h
capacity curve determined with a constraining radius ofs
is nearly indistinguishable from the curve obtained with
constraining radius of 2s. From the results of this work, we
know the initial high temperature walk is not ergodic when
t
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constraining radius of 4s is used. It is striking that the non
ergodicity as measured by the energy metric is not appa
in the heat capacity curve.

We have constructed a metric based on an ensembl
MC trajectories. By using an ensemble we attempt to co
sufficient portions of space so that all components are ac
sible. In practice only a finite subset of a full ensemble c
be included, and it is always possible that components
space are missed. In such a caseYK may decay to zero
numerically within the subspace, and the behavior may g
misleading evidence that the simulation is ergodic. Beca
components of space may be missed in any finite simulat
it is impossible to guarantee ergodicity. It is hoped that,
using a sufficiently large ensemble of trajectories to defi
the metric, the possibility of missing components is min
mized.
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APPENDIX A: WEAK DEPENDENCE
OF THE NONDIFFUSIVE CONTRIBUTIONS

We have considered two overall time scales for a M
simulation. Properties calculated at short times~labeledk in
the discrete case! provide information about each step of th
MC process, and properties averaged over the total sim
tion time ~labeledK in the discrete case! give information
about the approach to ergodic behavior. WhenK is suffi-
ciently short we have both diffusive and nondiffusive cont
butions as a function ofk. In this Appendix we explain the
relative time dependence of the diffusive and nondiffus
contributions to the autocorrelation function.

It has been assumed that the autocorrelation function
~28! can be expressed as the sum of diffusive terms p
nondiffusive terms, i.e.,

k~ t,t8!5kd~ t,t8!1 (
l 5l11

L

knd,l ~ t,t8!, ~A1!

where

kd~ t,t8!5
G01G11G21•••1Gl

t.
, ~A2!

knd,l ~ t,t8!5
G l

t l

f l S t l*

t l
D . ~A3!

By increasing the time variables by a factorb.1, such
that tl!bt.!tl11, with l>1, we can study the relative
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variations of each contribution to the correlation functio
diffusive and nondiffusive~labeled byl .l). In this Appen-
dix we consider only values ofb such that the transformatio
t→bt does not increase the time scale beyond the local
relation time. In Appendix B values ofb are considered tha
do cross such time scales.

By the relative variations we mean

Dd~ t,t8;b!5Ukd~bt,bt8!2kd~ t,t8!

kd~ t,t8!
U , ~A4!

Dnd,l ~ t,t8;b!5Uknd,l ~bt,bt8!2knd,l ~ t,t8!

knd,l ~ t,t8!
U . ~A5!

The relative variation of each nondiffusive contribution is

Dnd,l ~ t,t8;b!5U12
1

b2

E
0

bt

dt1E
0

bt8
dt2 f l ~ ut12t2u/t l !

E
0

t

dt1E
0

t8
dt2 f l ~ ut12t2u/t l !

U ,

~A6!

whereas the relative variation of the diffusive contribution

Dd~ t,t8;b!512
1

b
. ~A7!

If Dd(t,t8;b).Dnd,l (t,t8;b) for all pairs of timest and t8
and for allb.1 such thatbt.!t l , we say that the nondif-
fusive contributions are weaker than the diffusive contrib
tion in their dependence ont. In the remainder of this Ap-
pendix we explore the propertiesf l must have in order tha
the inequalityDd(t,t8;b).Dnd,l (t,t8;b) is satisfied.

Lemma. If the functionH l (t;t),

H l ~ t;t!5E
0

t

dt8 f l S t8

t D.0, ~A8!

satisfies the inequality

H l ~ t;t!.t f l S t

t D;t and t, ~A9!

thenH l (t;t) is an increasing function oft.
Demonstration. For l and t fixed, the functionH l (t,t)

evaluated int8 is

H l ~ t;t8!5E
0

t

dt8 f l S t8

t8
D ~A10!

5E
0

t

dt8 f l S tt8

t8t
D ~A11!
,

r-

-

5
t8

t E0

tt/t8
du fl S u

t D ~A12!

5
t8

t
H l ~tt/t8;t!; ~A13!

then, forDt.0,

H l ~ t;t1Dt!2H l ~ t;t!

Dt
5

1

Dt H t1Dt

t E
0

tt/(t1Dt)

dt8 f l S t8

t D
2E

0

t

dt8 f l S t8

t D J ~A14!

5
1

Dt H Dt

t E
0

tt/(t1Dt)

dt8 f l S t8

t D
2E

tt/(t1Dt)

t

dt8 f l S t8

t D J ~A15!

5
1

Dt H Dt

t E
0

tt/(t1Dt)

dt8 f l S t8

t D
2

tDt

t1Dt
f l S t*

t D J , ~A16!

wheret* P@ tt/(t1Dt),t#. In the limit Dt→0, and by vir-
tue of the continuity off l , the derivative takes the form

]H l ~ t;t!

]t
5

1

t H H l ~ t;t!2t f l S t

t D J . ~A17!

Then ]H l (t;t)/]t.0, andH l (t;t) is an increasing func-
tion of t.h

Here we have presented the two first conditionsf l must
satisfy, namely, Eqs.~A8! and~A9!. From Eq.~19! f l (0) is
a global maximum, and the memory functions must hav
positive peak at zero. The area below that peak must
sufficiently large to satisfy Eq.~A8!. Moreover,f l (0) must
be sufficiently large to satisfy Eq.~A9!, even at points where
f l (t/t) is a local maximum. Thus, to satisfy this Lemma, w
need a memory function with a sufficiently large glob
maximum att50.

Corollary. SupposeH l (t;t l ).t f l (t/t l ). If b.1, then
0,Dnd,l (t,t8;b),1 for all pair of timest and t8.

Demonstration. Under the change of scale in timet
→bt, knd,l (t,t8) can be written

knd,l ~bt,bt8!5
1

b2tt8
E

0

bt

dt1E
0

bt8
dt2

1

t l

f l S ut12t2u
t l

D
~A18!

5
1

tt8
E

0

t

dt1E
0

t8
dt2

1

t l

f l S but12t2u
t l

D ;

~A19!



then the quotientknd,l (bt,bt8)/knd,l (t,t8) is

PRE 62 7457APPROACH TO ERGODICITY IN MONTE CARLO SIMULATIONS
knd,l ~bt,bt8!

knd,l ~ t,t8!
5

E
0

t

dt1H E
0

t1
dt f l @ t/~t l /b!#1E

0

t.2t1
dt f l @ t/~t l /b!#J

E
0

t

dt1H E
0

t1
dt f l ~ t/t l !1E

0

t.2t1
dt f l ~ t/t l !J ~A20!

5

E
0

t

dt1$H l ~ t1 ;t l /b!1H l ~ t.2t1 ;t l /b!%

E
0

t

dt1$H l ~ t1 ;t l !1H l ~ t.2t1 ;t l !%

. ~A21!
d

By Eq. ~A8!, H l (t;t).0; t andt. By the Lemma above the
numerator is smaller than the denominator. Then
,knd,l (bt,bt8)/knd,l (t,t8),1 and 0,Dnd,l (t,t8;b),1.h

Theorem. Suppose thatb.1 is such thatt l 21!bt.

!t l , H l (t;t l ).t f l (t/t l ), and all f l satisfy the Lipschitz
condition @28#. This condition states that for every close
interval A exists a real positive numberCl such that

u f l ~x!2 f l ~y!u<Cl ux2yu ~A22!

for all x andy in A. ThenDnd,l (t,t8;b),Dd(t,t8;b) if and
only if f l is non-negative in the interval@0,t.).

Demonstration. If Dnd,l (t,t8;b),Dd(t,t8;b), then

12
1

b
.12

1

b2

E
0

bt

dt1E
0

bt8
dt2 f l ~ ut12t2u/t l !

E
0

t

dt1E
0

t8
dt2 f l ~ ut12t2u/t l !

,

~A23!

1,
1

b

E
0

bt

dt1E
0

bt8
dt2 f l ~ ut12t2u/t l !

E
0

t

dt1E
0

t8
dt2 f l ~ ut12t2u/t l !

, ~A24!

where the operations to reach Eq.~A24! are valid by using
the Corollary above. Then

0,E
0

bt

dt1E
0

bt8
dt2

1

b
f l S ut12t2u

t l
D

2E
0

t

dt1E
0

t8
dt2 f l S ut12t2u

t l
D , ~A25!

0,E
0

t

dt1E
0

t8
dt2H b f l S but12t2u

t l
D2 f l S ut12t2u

t l
D J ,

~A26!
0 0,E
0

t,

dt1H E
0

t1
dt2Fb f l S b~ t12t2!

t l
D2 f l S t12t2

t l
D G

1E
t1

t.

dt2Fb f l S b~ t22t1!

t l
D2 f l S t22t1

t l
D G J , ~A27!

0,E
0

t,

dt1H E
0

t1
dtFb f l S bt

t l
D2 f l S t

t l
D G

1E
0

t.2t1
dtFb f l S bt

t l
D2 f l S t

t l
D G J , ~A28!

0,E
0

t,

dt1H E
0

bt1
dt f l S t

t l
D2E

0

t1
dt f l S t

t l
D

1E
0

b(t.2t1)

dt f l S t

t l
D2E

0

t.2t1
dt f l S t

t l
D J ,

~A29!

0,E
0

t,

dt1H E
t1

bt1
dt f l S t

t l
D1E

t.2t1

b(t.2t1)

dt f l S t

t l
D J .

~A30!

Using the intermediate value theorem@24#, we have

E
t

bt

dt8 f l S t8

t l
D5~b21!t f l S t* ~ t !

t l
D ~A31!

5~b21!t f l S t

t l
D

1~b21!tF f l S t* ~ t !

t l
D2 f l S t

t l
D G , ~A32!



t
in

7458 PRE 62J. P. NEIROTTI, DAVID L. FREEMAN, AND J. D. DOLL
where t* (t)P@ t,bt#. Let ta* (t) and tb* (t) be the values a
which the intermediate value theorem is satisfied, in the
tervals@ t,bt# and @ t.2t,b(t.2t)#, respectively,

~b21!t f l S ta* ~ t !

t l
D 5E

t

bt

dt8 f l S t8

t l
D , ~A33!

~b21!~ t.2t ! f l S tb* ~ t !

t l
D 5E

t.2t

b(t.2t)

dt8 f l S t8

t l
D ;

~A34!
s

-

then the remainder can be written as

Rl ~ t, ,t. ;b!5E
0

t,

dtH tF f l S ta* ~ t !

t l
D 2 f l S t

t l
D G

1~ t.2t !F f l S tb* ~ t !

t l
D 2 f l S t.2t

t l
D G .

~A35!

By the Lipschitz condition, we have that
Rl ~ t, ,t. ;b!<E
0

t,

dtH tU f l S ta* ~ t !

t l
D 2 f l S t

t l
DU1~ t.2t !U f l S tb* ~ t !

t l
D 2 f l S t.2t

t l
DUJ ~A36!

,E
0

t,

dtH tCl Uta* ~ t !2t

t l
U1~ t.2t !Cl Utb* ~ t !2~ t.2t !

t l
UJ ~A37!

,
Cl

t l
E

0

t,

dt$tubt2tu1~ t.2t !ub~ t.2t !2~ t.2t !u% ~A38!

,
Cl

t l
~b21!E

0

t,

dt@ t21~ t.2t !2# ~A39!

,
Cl

t l
~b21!S 2

3
t,
3 1t,t.~ t.2t,! D ~A40!

,
2

3
t.
3 Cl

t l
~b21!, ~A41!
where Cl is a suitable positive real constant. Using Eq
~A32! and ~A35! in Eq. ~A30! we have

0,E
0

t,

dt~b21!H t f l S t

t l
D1~ t.2t ! f l S t.2t

t l
D J

1~b21!Rl ~ t, ,t. ;b!, ~A42!

0,E
0

t,

dt t f l S t

t l
D1E

t.2t,

t.

dt t f l S t

t l
D1Rl ~ t, ,t. ;b!,

~A43!

0,E
0

t,

dt t f l S t

t l
D1E

0

t.

dt t f l S t

t l
D2E

0

t.2t,

dt t f l S t

t l
D

1Rl ~ t, ,t. ;b!, ~A44!

0,F l ~ t,!1F l ~ t.!2F l ~ t.2t,!1
2

3
t.
3 Cl

t l
~b21!,

~A45!

where
.
F l ~ t !5E

0

t

dt8 t8 f l S t8

t l
D ~A46!

is a continuous and differentiable function oft. The inequal-
ity ~A45! holds for any b.1. Suppose thatF l (t,)
1F l (t.)2F l (t.2t,),0. Then, ifb is such that

b511
3

2L

t l

t.
3 Cl

uF l ~ t,!1F l ~ t.!2F l ~ t.2t,!u,

~A47!

whereL.2, we have that

0,F l ~ t,!1F l ~ t.!2F l ~ t.2t,!

1
1

L
uF l ~ t,!1F l ~ t.!2F l ~ t.2t,!u, ~A48!

0,
L21

L
@F l ~ t,!1F l ~ t.!2F l ~ t.2t,!#, ~A49!

in contradiction with the hypothesis thatF l (t,)1F l (t.)
2F l (t.2t,) is negative. Then
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0<F l ~ t,!1F l ~ t.!2F l ~ t.2t,!. ~A50!

Let us define the function

DF l ~ t !5F l ~ t !2F l ~ t.2t !, ~A51!

wheretP(0,t.). The right derivative att50 of DF l (t) is

lim
Dt→01

DF l ~Dt !2DF l ~0!

Dt

5 lim
Dt→01

F l ~Dt !2F l ~0!1F l ~ t.!2F l ~ t.2Dt !

Dt

~A52!

5 lim
Dt→01

1

Dt H E0

Dt

dt t f l S t

t l
D1E

t.2Dt

t.

dt t f l S t

t l
D J

~A53!

5 lim
Dt→01

1

Dt H Dtt1* f l S t1*

t l
D 1Dtt2* f l S t2*

t l
D J ,

~A54!

wheret1* P@0,Dt# and t2* P@ t.2Dt,t.#. Thus

]DF l ~ t !

]t U
t→01

5t. f l S t.

t l
D . ~A55!

If the right derivative at 0 ofDF l (t) is negative,DF l (t)
approaches2F l (t.) from below, whent→0. There exists a
time 0, t̃ ,t. such that 0.F l (t.)1DF l ( t̃ ), in contradic-
tion with Eq. ~A50!. Then f l must be non-negative fort
P(0,t.). By the property Eq.~19! f l (0) must be positive.
This proves thatDnd,1(t,t8;b),Dd(t,t8;b)⇒ f l (t)>0 for
0<t,t. . To demonstrate that positivef l yields
Dnd,1(t,t8;b),Dd(t,t8;b) ~i.e., the converse!, follow the ar-
gument backward, from Eq.~A30!. h

In conclusion, if the memory functions are positive, s
isfy the Lipschitz condition, and satisfy the condition Eq
~A8! and ~A9!, the nondiffusive contributions are mor
weakly dependent on time than 1/t.

The results of the present Appendix are valid in the lim
of a complete ensemble. In our numerical experiments o
partial samples of the ensemble can be considered.
memory functions that appear in our numerical calculatio
come from partial mean values of the product of disconti
ous functions~every noise process is a discontinuous fun
tion!. These memory functions are discontinuous. The
havior of the nondiffusive contributions observed in o
numerical experiments is in agreement with these anal
~infinite ensemble limit! results. We can infer that ther
might be a version of the theorem applied to discontinu
memory functions, but we have been unable to develop s
a theorem.

APPENDIX B: CONSEQUENCES OF THE TIME SCALE
CHANGE IN THE NONDIFFUSIVE CONTRIBUTIONS

In this Appendix we show the behavior of the functionf 1
when its correlation time is changed according tot1→tb1
-
.

t
ly
he
s
-
-
-

ic

s
ch

5t1 /b, with b@1; i.e., when the total simulation time i
scaled to exceed the correlation time of the first colored no
process.

We multiply the time variables by a numberb, such that
t1!bt.!t2. We have that theg1 process contributes to th
autocorrelation function with

1

b2tt8
^G1~bt/t l !G1~bt8/t l !&

5
1

b2tt8
E

0

bt,
dt1E

0

bt.
dt2

1

t1
f 1S ut12t2u

t1
D ~B1!

5
1

btt8
E

0

t,

dt18E
0

t.

dt28
1

tb1
f 1S ut182t28u

tb1
D , ~B2!

wheret85t/b andtb15t1 /b. We want to compute this con
tribution within the neighborhoodt15t2 as well as outside
such a region. To do so, we can split the integral in Eq.~B2!
into three parts,

1

b2tt8
^G1~bt/t l !G1~bt8/t l !&5I 11I 21I 3 , ~B3!

where

I 15
1

btt8
E

0

t,

dt1E
0

max(0,t12e/2)

dt2
1

tb1
f 1S t12t2

tb1
D , ~B4!

I 25
1

btt8
E

0

t,

dt1E
max(0,t12e/2)

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D , ~B5!

I 35
1

btt8
E

0

t,

dt1E
min(t. ,t11e/2)

t.

dt2
1

tb1
f 1S t22t1

tb1
D , ~B6!

with t,.e.0 ~observe that the only integral involvingt1
5t2 is I 2). ConsiderI 1. If t1,e/2 the inner integral is zero
Therefore,t1 must be bigger thane/2 and

I 15
1

bt,t.
E

e/2

t,

dt1E
0

t12e/2

dt2
1

tb1
f 1S t12t2

tb1
D , ~B7!

which, by virtue of the continuity off 1, can be bounded a
follows:

1

bt,t.
E

e/2

t,

dt1
b

t1
S t12

e

2D f 1S btmin

t1
D

<I 1<
1

bt,t.
E

e/2

t,

dt1
b

t1
S t12

e

2D f 1S btmax

t1
D ,

1

2

~ t,2e/2!2

t,t.

1

t1
f 1S btmin

t1
D

<I 1<
1

2

~ t,2e/2!2

t,t.

1

t1
f 1S btmax

t1
D ,

~B8!
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wheretmax (tmin) is the time in the interval@e/2,t,# at which
the functionf 1 reaches its maximum~minimum! value. Be-
causef 1 is continuous, there existst1* P@ tmin ,tmax# at which

I 15
1

2

~ t,2e/2!2

t,t.

1

t1
f 1S bt1*

t1
D . ~B9!

Consider nowI 3. If t11e/2.t. , the inner integral is
zero. Therefore, 0,t1,min(t, ,t.2e/2) and

I 35
1

btt8
E

0

min(t, ,t.2e/2)

dt1E
t11e/2

t.

dt2
1

tb1
f 1S t22t1

tb1
D

5
min~ t, ,t.2e/2!

t,t.
F t.2

e

2
2

1

2
min~ t, ,t.2e/2!G

3
1

t1
f 1S bt3*

t1
D , ~B10!

where t3* P@ tmin ,tmax#, and nowtmax (tmin) is the time in
@e/2,t.# at which the functionf 1 reaches its maximum
~minimum! value.

Let us consider nowI 2. First observe that, for the integra
in t1, if 0<t1<e/2, max(0,t12e/2)50 and min(t. ,t11e/2)
5t11e/2. If e/2<t1<t, then max(0,t12e/2)5t12e/2.
Then

I 25
1

bt,t.
H E

0

e/2

dt1E
0

t11e/2

dt2
1

tb1
f 1S ut12t2u

tb1
D

1E
e/2

t,

dt1E
t12e/2

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D J .

~B11!

The integral int2 between 0 andt11e/2 can be evaluated
with the help of Fig. 7:

FIG. 7. The area under the curve represents the first integr
Eq. ~B11!. The darker piece is half of the integral in the interva
@2t1 ,t1#, the lighter is half of the integral in@2e/2,e/2#.
E
0

t11e/2

dt2
1

tb1
f 1S ut12t2u

tb1
D5

1

2E2e/2

e/2

dt
1

tb1
f 1S utu

tb1
D

1
1

2E2t1

t1
dt

1

tb1
f 1S utu

tb1
D .

~B12!

The second integral int1 can be separated into two part
the first for e/2<t1<min(t, ,t.2e/2) and the second fo
min(t, ,t.2e/2)<t1<t, . If t.2t,,e/2 the second term is
zero. Then

E
e/2

t,

dt1E
t12e/2

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D

5E
e/2

min(t, ,t.2e/2)

dt1E
t12e/2

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D

1QS e

2
1t,2t.D E

t.2e/2

t,

dt1E
t12e/2

min(t. ,t11e/2)

3dt2
1

tb1
f 1S ut12t2u

tb1
D , ~B13!

where Q is the step function. Ift1<min(t, ,t.2e/2) then
min(t. ,t11e/2)5t11e/2. The last integral int2 can be rear-
ranged in the same way as Eq.~B12!. Then

E
e/2

t,

dt1E
t12e/2

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D

5E
e/2

min(t, ,t.2e/2)

dt1E
2e/2

e/2

dt
1

tb1
f 1S utu

tb1
D

1
1

2
QS e

2
1t,2t.D E

t.2e/2

t,

dt1F E
2e/2

e/2

dt
1

tb1
f 1S utu

tb1
D

1E
t12t.

t.2t1
dt

1

tb1
f 1S utu

tb1
D G . ~B14!

We can observe that the correlation timetb1 goes to zero
whenb is increased. The function (1/t1) f 1(bt/t1) becomes
negligible outside a neighborhood oft50 @observe Eqs.~B9!
and ~B10!#. Equation ~16! holds, then, ifb is sufficiently
large that (1/tb1) f 1(t/tb1) can be considered ad function.
The integralsI 1 and I 3 become zero, and the integrals in
volving t50 in the expression ofI 2 converge to 1.I 2 be-
comes

I 25
1

bt,t.
H minS t, ,t.2

e

2D
1QS e

2
1t,2t.D S e

2
1t,2t.D J

5
1

bt.
, ~B15!

in
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which is a diffusive contribution to the autocorrelation fun
tion. The autocorrelation function then becomes

k~bt,bt8!5
G01G1

bt.
1 (

l 52

L
G l

t l

f l S tbl* ~ t.!

tbl
D . ~B16!
s.

s

.A
The same argument can be used whenb is such thatt2

!bt.!t3. After such changes in the time scale, the diff
sion coefficientG5G01G1 is enlarged, and the nondiffusiv
contributions are reduced. There is an ultimate scale cha
such thattL!bt. . Beyond this maximum time scale th
process can be considered diffusive.
m.

m.

.

,

.

set
@1# J.P. Valleau and S.G. Whittington, inStatistical Mechanics,
Part A: Equilibrium Techniques, Vol. 5 of Modern Theoretical
Chemistry Series, edited by B. Berne~Plenum, New York,
1976!, Chap. 4.

@2# W.W. Wood and F.R. Parker, J. Chem. Phys.27, 720 ~1957!.
@3# D. Thirumalai, R.D. Mountain, and T.R. Kirkpatrick, Phy

Rev. A 39, 3563~1989!.
@4# R.G. Palmer, Adv. Phys.31, 669 ~1982!.
@5# C.W. Gardiner,Handbook of Stochastic Methods for Physic

Chemistry and the Natural Sciences~Springer-Verlag, Berlin,
1983!.

@6# D.L. Freeman and J.D. Doll, Annu. Rev. Phys. Chem.47, 43
~1996!.

@7# R.M. Lynden-Bell and D.J. Wales, J. Chem. Phys.101, 1460
~1994!.

@8# J.P.K. Doye, D.J. Wales, and M.A. Miller, J. Chem. Phys.109,
8143 ~1998!.

@9# R.D. Mountain and D. Thirumalai, J. Phys. Chem.93, 6975
~1989!.

@10# D. Thirumalai and R.D. Mountain, Phys. Rev. A42, 4574
~1990!.

@11# J.E. Straub and D. Thirumalai, Proc. Natl. Acad. Sci. U.S
90, 809 ~1993!.

@12# A.J. Lichtenberg and M.A. Lieberman,Regular and Stochastic
Motion ~Springer-Verlag, New York, 1983!.

@13# I. Andricioaei and J.E. Straub, J. Chem. Phys.107, 9117
~1997!; R. D. Mountain and D. Thirumalai, Physica A210,
453 ~1994!.
,

.

@14# J.P. Neirotti, F. Calvo, D.L. Freeman, and J.D. Doll, J. Che
Phys.112, 10 340~2000!.

@15# F. Calvo, J.P. Neirotti, D.L. Freeman, and J.D. Doll, J. Che
Phys.112, 10 350~2000!.

@16# D.D. Frantz, D.L. Freeman, and J.D. Doll, J. Chem. Phys.93,
2769 ~1990!.

@17# E. Marinari and G. Parissi, Europhys. Lett.19, 451 ~1992!.
@18# C.J. Geyer and E.A. Thompson, J. Am. Stat. Assoc.90, 909

~1995!.
@19# M. Falcioni and M.W. Deem, J. Chem. Phys.110, 1754

~1999!.
@20# N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H

Teller, and E. Teller, J. Chem. Phys.21, 1087~1953!.
@21# J.K. Lee, J.A. Barker, and F.F. Abraham, J. Chem. Phys.58,

3166 ~1973!.
@22# P. Labastie and R.L. Whetten, Phys. Rev. Lett.65, 1567

~1990!.
@23# J.P. Neirotti, D.L. Freeman, and J.D. Doll, J. Chem. Phys.112,

3990 ~2000!.
@24# M. Spivak,Calculus, 3rd ed.~Publish or Perish, Berkeley, CA

1994!.
@25# R.S. Berry, T.L. Beck, H.L. Davis, and J. Jellinek, Adv. Chem

Phys.70B, 75 ~1988!.
@26# D.D. Frantz, J. Chem. Phys.102, 3747~1995!.
@27# Assuming the tolerable error to be on the order of 1%, we

0.01.u@cot(vn/2)22/vn#/(2/vn)u5vn
2/121O(vn

4). Then
nmax5bKA12/20p.

@28# A.N. Kolmogorov and S.V. Fomin,Introductory Real Analysis
~Dover, New York, 1970!.


